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Motivating Problems

Structures of interest:

Hermitian manifold — Complex manifold — Topological Manifold

Questions:

@ What do various types of special Hermitian metrics tell us about the
underlying compatible complex structure?

@ What do various types of complex structures tell us about the
underlying topology?

@ In each case, we may study admissibility, or obstructions.



Motivating Problems

One formulation of the topology problem, in the words of Sullivan:

Prove anything about the topology
of compact complex manifolds in dimensions > 6.

Open-ended, but still challenging. So, why is this compelling?

To quote Thurston:

“The product of mathematics is clarity and understanding. Not the-
orems, by themselves. Their real importance is not in their specific
statements, but their role in challenging our understanding, present-
ing challenges that led to mathematical developments that increased
our understanding.”



Bounty of hope: Kdhler geometry

Deligne, Griffiths, Morgan, Sullivan (1975):

3 Kéahler metric
= C-structure satisfies dd“-condition
= topology is formal

Among several results to explain today:

Theorem (Stelzig, W.)

3 Vaisman metric = C-structure satisfies dd€ + 3-condition
3 Vaisman metric = topology is almost formal ( = As-algebra)
dd® + 3 in low degree —>  restrictions on homotopy type in all dim’s

To do: dd€ + 3-condition, Ex's, Properties (blowups, deformations, etc.)



Review of dd°-condition

For any complex manifold M, the differential forms A of M feature in the
diagram

(Ima,d)
~
, (Kerd<,d)
— T
(A, d) (Hge(A),d =0)

(Imde, d)
where d¢ = J~'d.J. Fact: J integrable iff [d®, Jger] = 0 — d.

Defn: The dd®-condition holds iff the maps induce iso's on cohomology.

To see when this occurs, take (co)kernels:  dd°-condition holds iff
Hy(Imde,d) = 0.



Review of dd°-condition

Theorem

[The dd¢-condition, DGMS] B ~ -
For any bounded bicomplex (A, d,0), with d =0 + 0 and d° = i(0 — 0),
the following are equivalent:

@ Hy(Imde,d) = 0.

@ Forallz € A, ifde =0 and x = d°z, then x = ddw for some w.

@ E;-degeneration and pure Hodge structure on Hy(A).

@ The bicomplex (A, 0,0) is a direct sum of

o bicomplexes with only a single component, and 3 = 0 = 0 (dots)
o bicomplexes which are a square of isomorphisms (squares)

dots: 0 squares: c2.c
T 5T T ;
c-=%p c—2-cC



Zig-Zag decompositions

What other types of bicomplexes could occur?

Theorem (Stelzig, Khovanov-Qi)

Every (bounded) bicomplex (A, d,d) decomposes as a direct sum of dots,
squares, and zigzags.

In addition to dots and squares we have:



Odd Zig-Zags

Length 3 zig-zags
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and more generally, odd-length zig-zags:
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Even Zig-Zags

Length 2 zig-zags
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And more generally, even-length zig-zags:
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Dictionary: “decomposition types <> algebra”

@ No even zig-zags iff H5 = Hp = H, , i.e. Ej-degeneration.

@ No odd zig-zags of length > 1 iff every class in Hy; has a unique
representative of a single bi-degree (p, q) , i.e. pure Hodge structure on
Hy.

Example

For M = S' x 52 with the complex structure of a Hopf manifold, the
Frolicher spectral sequence degenerates, i.e. no even zig-zags, and

. |
A(M) ~ @ —-iL— :

Similarly, for all complex surfaces: there are only dots, squares and length 3
zig-zags.



Calabi-Eckmann

Unlike compact complex surfaces, in dim > 6 there can be even length
zig-zags, and odd zig-zags of length > 3.

Example

For M = 83 x 52 with the Calabi-Eckmann complex structure ,
ha' (M) # 0 but HY(M) = 0.
It follows from calculations of Angella and Tomassini that

AM) ~ O == &) i_-

_I
_I




dd® + 3

Theorem (Stelzig, W., the dd° + 3-condition)

For any bounded bicomplex A, the following are equivalent:

The bicomplex (A, ,d) decomposes as a direct sum of dots, squares
and length 3 zigzags.

The Frolicher (row- and column-) spectral sequences degenerate at Ej,
and the purity defect is equal to 1.

The following holds, for all k > 0: For all x € Ak if g = dy and

x = dz, then x = dw with w € Ker d°.

The following numerical equality holds:

©

© ©

> dim H*(Ker d®) + dim H*(A/Tmd) =2 _ by.
k k

Purity defect “pdef” measures (roughly) how many distinct bi-degrees might
be needed to represent a given class in Hy(A).

Easiest definition: pdef = k iff the longest odd length zig-zag has length
2k + 1.



dd® + 3 and S.E.S.

New character in the story: Hy(A/Im d°)

For any complex manifold there is a diagram

S

/

and a short exact sequence of complexes:

(Kerde,d

(A/Imde,d

0— (Kerd®,d) — " (A, d) @ (Hge,0) = (A/Im d°, d) — 0,



dd‘ + 3, L.E.S, and Hopf's Problem

So, every complex manifold induces a long exact sequence in cohomology:

Sp—1 N it . p—J Sk
o ——> HF (Kerd®) ——— HE @ HE. — > H* (A/Im a®) ———= HFH! (Kerd®) ———> - -
Lemma [Stelzig, W.] dd°+3 <= 4§ =0.

Corollary:

> dim H*(Ker d°) + dim H*(A/Imd*) > 2 " by.
k k

with equality iff dd® + 3.
Aside on Hopf's Problem:

4 is an isomorphism iff the manifold is a homology sphere (rationally).
Only known example of such a complex manifold is S2.

Are there others?

Note: Albanese and Milivojevi¢'s construction yields many potential
examples.



dd‘ + 3 Properties

In the category of complex manifolds, the dd® + 3-condition satisfies:

© ©6 66 6 6

A blow-up of a manifold M along a smooth center Z C M is dd® + 3 if
and only if both M and Z are dd° + 3.

A product is dd® + 3 if and only if one factor is a dd® + 3-manifold and
one is a dd°-manifold.

The target of a holomorphic surjection f : M — N with M a

dd® + 3-manifold and dim M = dim N is again a dd® + 3-manifold.

Projectivized holomorphic vector bundles are dd® + 3-manifolds if and
only if the base of the bundle is a dd® 4+ 3-manifold.

Any sufficiently small deformation of a dd® + 3-manifold is again a
dd® + 3-manifold.



Stability under small deformations

More generally, in words: if there are no even zig zags, the length of the
longest odd zig-zag can only go down in a small deformation of the complex
structure.

Sketch of proof of stability:
dd®+3 <= dim Hz = dim H; and pdef = 1.

Classical result: dim Hyz = dim Hy is stable, since dim H5 > dim H,, and
dim Hj is semi-continuous in families.

Suffices to show: dim Hy = dim H; = pdef € N is semi-continuous ,

Idea: express pdef in terms of a vector-bundle built from intersections of
various filtrations of cohomology. In fact,

pdef = | max {p—l—q—k"Fprj(M;C)ﬂFqHZf(M;(C) # 0}’

p,4,k>0

and {FPHY(M,)} form a complex vector subbundle of the vector bundle
{H%(M;)} over the base t € A of a family M;.



Examples of dd° + 3, Vaisman

Examples of dd® + 3 manifolds
o all compact complex surfaces
higher Hopf manifolds S x §27—1
certain twistor spaces
simply connected examples (Kasuya, Stelzig)
many nilmanifolds

© ©6 0 o

Theorem (Stelzig, W.)

If a compact complex manifold admits a Vaisman metric then the underlying
complex structure is dd® + 3.

A metric w is called Vaisman if dw = 6 A w, with 6 parallel.

In fact, one can compute which zigzags appear in which positions within the
bicomplex of forms of a Vaisman manifold.



Vaisman decomposition

Consider H g, the subspace of d-harmonic basic forms, which are invariant
under the group action generated by dual holomorphic vector fields Xy and
X .

Write: 6 = 649 4991,

Theorem (Tsukada 1994, Ishida and Kasuya 2019)

The subspace
Hp @ AO%, 000 C A(V)

is a d-subcomplex and inclusion induces an isomorphism.

Behavior is similar to Kahler manifold, having a Lefschetz decomposition
given by the operator L given by wedging with wy = d°0. One computes the
bicomplex using the primitive decomposition.



Vaisman decomposition

Namely, Hp ® A{6%!,60) decomposes as a direct sum of tensor products
of primitive forms (dots) with bicomplexes of the form

<90,1> @ <01,090,1>
D 7]
C o (M)

and

<90,1w8—k) <90,191,0wg—k>
ah

Ck— a _
(61:060:1 1 k 1>_><‘91’0WS ky

(0013 F1) o (Wit
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(61:060:1,,7) > (610,71

001y 2 (wg)
Ao

c (61:0)



dd® + 3 = topological restrictions

Finally, | want to indicate how the rational homotopy type restricts the types
of bicomplexes that can occur, for a complex manifold structure with a given
underlying topology.

Example

Consider a filiform nilmanifold M = G/T where T is a lattice in the simply
connected Lie group G associated with the left-invariant forms

Aty .08 dnt =dn? =0, dpf =n'n*1 for k=3, ..,6.

Non-formal nilmanifold with b; = 2 and trivial ring structure on H*'.
@ Admits an almost complex structure (e.g. put Jn?F = n2k—1),

@ Does not admit left-invariant complex structures (Goze-Remm, 2002)

@ Does admit J; where N(J;) — 0 (Fernandez, Shin, W.).

@ It is unknown whether it admits any complex structure.

Which bi-complexes could occur for a hypothetical complex structure on M?



dd® +3 — topological restrictions

Question

Is it possible that M admits a complex structure with the following
bicomplex decomposition:

- AN i
D D . @ I__L plsz ©® Tt

This would yield the correct Betti numbers and satisfy the dd® + 3 condition.

No, in fact...rational homotopy theory shows dd® + 3 must fail:

Theorem (Stelzig, W.)

No compact 6-manifold with the homotopy type of this nilmanifold can
support such a complex structure.




dd® + 3 = topological restrictions

A sketch of the argument for this claim, which generally gives rational
homotopy obstructions to dd® + 3-complex structures, even in low degree.

The diagram
(Kerde,d
d) (Hge,d =0)
\ /

(A/Imd°,d

has additional symmetries when A is differential forms on compact
2n-manifold:

@ (left-right symmetry) The left and right side induce maps of same rank
cohomology groups, for all k.

@ (top-bottom duality) H*(Kerd®) = (H**~*(A/Imd))V, for all k.
In particular, the top maps induce an iso in top degree.



dd® + 3 = topological restrictions

The filiform nilmanifold is far from being formal: all the topology is
generated from forms of degrees < 1, even the fundamental class.

But, the cohomology ring in degrees < 1 is trivial, so does not create the
fundamental class.

Taking a minimal model M for the algebra Ker d¢,
M

|

(Kerde,d

/\

(Hge,d = 0)

and using
dd® + 3-condition <= i @ 7 is injective on cohomology,

one can play the two sides of the diagram against each other, and contradict
the left-right symmetry of induced maps in top degree cohomology.



dd® +3 — topological restrictions

An example which does have a complex structure:
Let M = G/T be a nilmanifold with structure equations

dn® =n'n? dn* =n'n?
dn® = n’n? dn® = n'n* + .
Then by (M) = 2, and n'n? = dn?, so the product U: H' x H' — H? is

trivial. There are two left-invariant complex structures, both degenerate at
FE5 but not Ey, and satisfy purity in degree 1, and pdef < 1. For each

|
= — 1
H— oo =T

e | |
I

AM) = e H

Similar arguments using rational homotopy show this manifold cannot have a
complex structure that is dd® + 3 with pure Hodge in degree 1, left invariant
or not. In particular, the “lines” in the last diagram cannot be dropped.



Thank you!

Reference: “A dd¢-type condition beyond the Kahler realm,” Stelzig, Wilson
J. Inst. Math. Jussieu, 2024.



cousins of H4 and Hpc

Relation with Bott-Chern and Appeli cohomologies:

0 0

o HY @ HY, —= HM(A/Imd¢) —2%= H*1(Ker d°) — H5 @ HEH

P 2
d
HE (4) HEH ()
HE () — =0 AT (4)




