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Almost complex structures

o M smooth (compact) manifold of dimension 2n.
o Almost complex structure: J: TM — TM ; J? = —1d.

Examples: (M, J) complex manifold (i.e. holomorphic atlas).

Generally, we have a section of a bundle:

{linear complex structures on T, M} — J
»

b

M

0 t
Note that the fiber is non-compact: e.g. J; = .
—1/t 0

For (n = 1), the fiber is R — {line}.
In general, the fiber is non-compact space of dimension n(2n) = 2n?.
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Almost complex structures

Theorem (Newlander-Nirenberg): (M, J) is a complex manifold if and only

where the Nijenhuis tensor N is defined by
Ny (X, Y):=[X, Y]+ JJX, Y]+ JX,JY] — [JX, JY].

In this case, we say J is integrable.

There are many other equivalent ways to formulate integrability.
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Almost complex structures

o There are topological obstructions to the existence of an almost complex
structure.

o In low dimensions (2n < 10), these can be written in terms of characteristic
classes.

o Assuming existence, we can ask for an integrable almost complex structure.
o In real dimension 2: every almost complex structure is integrable.

o In real dimension 4: there are (further) topological obstructions to the
existence of an integrable structure.
o Kodaira's classification of surfaces.
Buchdahl's study of the intersection pairing on Ker(90).
o In real dimension 6: It is unknown whether there are any further
obstructions to the existence of an integrable structure.

o There are almost complex 6-manifolds for which there is no known complex

structure (one example below).
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Almost complex structures

Let's generalize the following (difficult) question:
Can we choose J so that N; = 07
to the question:

Can we chose J so that N is arbitrarily small?
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Goal for the talk

o We'll present examples of compact almost complex manifolds with no
complex structure (2n = 4) and a 1-parameter family of almost complex
structures such that Nj, — 0 as t = oo.

o Here the convergence is in the A, ie. supremum, norm.

o We'll also give a similar example in dimension 6, that is not known to be
complex.

o All examples will be nilmanifolds, or solvmanifolds.

o Remark on motivation from h-principle:

o Can express an integrable structure as solution to “closed differential
relation”.
o Via h-principle techniques one can try to deform a “formal” solution to a

“genuine” one.
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Nilmanifold review

o We'll consider G = R* with nilpotent Lie group structure, and discrete
co-compact subgroup T, acting on G on the left.

o Associated nilmanifold is the (right) coset space M =T'\G.

o To define an almost complex structure on M, it suffices to give a linear
complex structure on g.

o Extend any Jon g to be left G-invariant, therefore left I'-invariant.
o In general the topology of M depends on T, but...

Theorem (Nomizu): The real cohomology of M can be computed from the
cohomology of the Lie algebra g.

Let's do an example...
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Let
g= Spa‘nR{X17 XQ; X3a X4}
and only non-zero brackets determined by
[Xl, Xz] = Xi+1 for i= 2, 3.
If {1, 22, 25, 24} is the dual basis,
dry =0 doo =0 drz=—21 ANxy daxg = —x1 A 23.

Now use these to compute the real cohomology.
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We have

3 —z1 2013 —x] TR Ty T 23Ty TQTITY
2 —aqzp —aq a3 T3y zg@3 zo1y z314
1 E2 oo z3 Ty

Therefore, by Poincaré Duality, the Betti numbers of '\ G are

by = by = by = 2
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Corollary

For any lattice T' C G, the compact 4-manifold T'\ G does not admit a complex
structure.

Sketch of Proof:

o If I'\G is complex, since by = 2, I'\ G is Kahler.
o But a formal nilmanifold is a torus (Hasegawa).
o But by =2 #4, so I'\G is not a torus.

o Note that I'\ G is symplectic: ;x4 + 2273 is closed and non-degenerate.
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o Although T'\ G has no complex structure, consider for ¢t > 0:

1 —2cscht 0 0
7 — sinh ¢ -1 0 0
oo 0 —1-V2 —2(2+V2)cscht|
0 0 sinh ¢ 1++2

Recall csch ¢ = 1/sinh t. One can check that J? = —Id.

Note that lim J; does not exist:
t—o00

1 0 0 0
+o0 -1 0 0
lim J; =
et "0 0 —1-v2 0
0 0 +oo  14+V2
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o Since the Nijenhuis-tensor is skew-symmetric, it is completely determined by

Ny(X1,X5) =0

Ny(X1, X3) = (44 4v2) csch t X

Ny(X1, X4) = 2(24 V2) esch £[2(2 + V2) csch £ X5 — V2 X,
Ny(Xs, X3) = 4esch t[(24 V2) esch t X3 — (1 +V2) Xy]
Ny(Xa, Xy) = 74(2 +V2) esch? t X,

Ni(X3, Xq) =

So N; — 0 uniformly on T\ G as ¢ — oo.

o So, any such filiform manifold I'\ G has no complex structure, but has a
family J; with arbitrarily small Nuijenhuis tensor.

o We have no conceptual explanation for this!
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Let
g = spangp{ Xy, Xp, X3, X4}

and only non-zero brackets determined by

(X1, X3] = —kX3
[Xo, X3] = kX,

for any k# 0. Then
g = g(k) + R[X4]

where g(k) the Lie algebra of the simply connected solvable (non-nilpotent) Lie
group G(k) given by matrices of the form

ek= 0

0 =z
0 e™ 0 y
0 0 1z’
0 0 01

where z,y, z€ R and £ # 0.
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o Solvable Lie groups may not admit a lattice. There is no general criteria.

o But G(k) does admit a lattice (many in fact; details omitted).

o Let M*(k) = (I'\G(k)) x S".

o The Lie algebra is completely solvable, i.e. the adjoint action adx has real
eigenvalues for all X.

Theorem (Hattori): The real cohomology of any completely solvmanifold can be
computed from the cohomology of the Lie algebra g.

In this case, one can compute the Betti numbers of M*(k) as before:

by = by = b3 = 2.
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Theorem (Fernandez-Gray): A compact 4-dimensional parallelizable manifold
with by = 2 has no complex structure.

Ferndndez and Gray also show that the manifolds M*(k):
o are symplectic (and therefore almost Kahler).
o satisfy all known cohomological properties of Kahler manifolds.
o are formal (in fact the same minimal model as S' x S' x $%).

o but neverththeless are not Kahler, as they are not even complex.
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For any k # 0, consider the family of linear almost complex structures on g
defined in the ordered basis {X7,..., X4} by:

—2 -1 6+3kt242k24t 6—/3kt2+2k2 ¢4
Kt2 V3 3k2¢3 3k2¢5
-1 o -1 _ 2t V3B—2kt?
J=|V3 V3kt 3 3kt3
1 1 1y 1 =1
t ¢ V3 k2 ktd
-1 -1 1
— ‘ -1 -1
F Vi1

One can show that J? = —1Id.
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Then the Nijenhuis-tensor is determined by

—2k 2k
Ni(X1, Xg) = T (X1 + X2) + 2%
Ny(Xq, X3) = : (ikXS + X4> + - (i)ﬁ + LX2> - ix3 + ixl
t \V3 2 \ V3 V3 3 ktd
2 1 1 1 2k
Ne(X1, X = e X = 3+ﬁ(xz—x1)+rsx4+ﬁ(xl+x2)
Ny(Xg, X3) = 72X1 - iXe. +— (8X1 + X2) + : (ﬂxs - X4)
14 3 V3t2 t \ V3
Ny(Xg, Xg) = ixl + ixs +— (8x1 — X2) + iX4 = (X1 + X2)
6 5 V34 3 3¢2
4 2 2 2 /1 1
NiXg, Xg) = 52X — o Xa e (X2 = X1) + a (£X3 + ;XAL)
ak
+3?(X1 + Xg) — 3?X3+ 33 (X1 + Xa) .
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Then the Nijenhuis-tensor is determined by

—2k 2%
Ni(X1, Xg) = T (X1 + X2) + K

N(xx)l%x+x P e Lyt 2ox
el T\ ) Te\wmtt T st T s T

Ni(Xp, Xyg) = =5 X1 = o X3+ \/;t4 (Xg — X1) + 3X4+%(X1+X2)
-2 1 1 1 —2k
Ni(Xp, Xg) = -2 X1 = S Xs 4 —og (BX1 4 X) + (fxs - X4)
2 1 -1 1 2%
Mg, Xg) = eXt pXs ooy (3X1 = Xa) + Xy + 5 (X1 + X)
2 2 2 (1
NiXg Xa) = 52Xy - g Xst o g (Y2 - X))+ 3 (E 3+ *X4)
4k
+ 3 (X +X2) - (X1 + Xa) -

J— — Xq +
3¢3 32 %7 3vm

Then, for each k# 0, N, — 0 as t — oo.
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Then the Nijenhuis-tensor is determined by

Np(Xp, X T2 x4 x 2k
(X1, 2)7@( 1+ 2)-%—t72

Mexr %) = (P x4 = (hx 4 Lk gt 2x
el T\ ) Te\wmtt T st T s T

Ni(Xp, Xyg) = 5 X1 %5 3+ \/;t4 (Xg — X1) + 3X4+%(X1+X2)
Ni(Xp, X3) = ;le - iX:‘; +— (8X1 + X2) + : (ﬂxs - X4)

ktd 3 V3t2 t \ V3

2 1 —1 1 2k
Mg, Xg) = eXt pXs ooy (3X1 = Xa) + Xy + 5 (X1 + X)

2 2 2 /1
Ne(X3, Xq) = e X1 = 5 X3 + e (X2 = X1) + a (EX:’ + *X4)
£ Xe) g (x4 Xy)
3t2 3V/3t

3¢3

Then, for each k# 0, N, — 0 as t — oo.

Again, we have no conceptual explanation for this.
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What about dimension 67

Consider the Lie algebra g = spang{Xj,..., Xg}, with only non-zero brackets
determined by

[Xl,Xi} = Xi+1 for i= 2,3,475.

Let M5 =T'\ G where T is a discrete subgroup of the simply connected Lie
group G associated to g.

Theorem (Goze-Remm): The Lie algebra g does not admit an integrable linear
complex structure.

So, there is no complex structure on M? induced as a nilmanifold.
Unknown whether M® admits a complex structure.
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We give an example of a 1-parameter family J;, of left-invariant almost-complex
structures on any M®, such that the Nijenhuis-tensor N, := N(.J;) satisfies

N; — 0 as t — oo.
In the ordered basis { X1, ..., Xs}, define

S 0 0 0 0
\/§(i2+1) 3
a3 (i4+t2+1) 2 o o o 0
3(t2+1)2 V3(2+1)
1 0 ﬁ 1 0 0
Jp = 243 1 _ 4t 1 0 0
V3(2+1) 2 3 V3
o _ st 4a?4 812 (2 +1) Y 1 241
V313 (2L2+1) 3V3(212+1) 615 +912+3 V3 3
43 (42 +1) 2 1615 (2t4+2t2+1) 81t a3 1
3v3 (204432 41) 3 79(t2+1)2<2t2+1) 7\/§(St2+3) 73(t2+1) V3
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Ny(X1, X3)

Ni(X1, Xg)

1 (tG +7td 452 4 1) 2 (t2 + 1)
Bt V36 (262 + 1) %5 = 3t (262 + 1) e
2t 4 8(12—t+1)(t2+t+1)
_\/E(:2+1)X3_ 3(t2+1)x4_ 3\/§t(t2+1)2 s
1 2t
_§X3+ m)ﬁl
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Then:

1 (t6+7t4+5t2+1) 2(t2+1)

NelX1, X2) Bt V316 (2t2 +1) X5 - 3t(2t2 + 1) X6
B 2t . 4 . 8(i2—t+1)(t2+t+1)x

Ne(Xq, X3) = _\/E(n2+1) 3—3(t2+1) 4= 3\/§t(t2+1)2 5
Ny(Xq, X, = Ly 2t X,
(X1, X)) = —z 3+m 4

2 4
Ny(X1,X5) = *Exs - mxﬁ

D
Ny(X1,Xg) = — © X5 + ﬁxs
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Then:
1 (t6+7i4+5t2+1)x 2(t2+1)x
Melx X)) = Xt V36 (212 + 1) 57 3t(22 1) 6
_ 2t Py 4 N 8(t2—t+1)(t2+t+1)x
M, Xs) = A REEICE 3v3 (2 + 1)2 5
(2+1)
1 2t
Ny(X1,Xg) = —§x3+mx4
3 2 . L
Ny(Xy, X5) = V-7 m 6
D
Ni(X1,Xg) = -t X+ X
1 2 4(t4+3t2+1) . .
NilXa, X3) = g Xe - V313 fat e (2 +1) (22 +1) 5T sva®
1 2 4
Ni(Xp. Xg) = - Xat o Xs - 3(2127_*_1))(6
(2 +1 2
Ny(Xg, X5) = 5 X5 = =3
(2+1)
Niy(X2, Xg) = — X6
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Then:

N % I (t6+7i4+5t2+1)x 2(t2+1)x
(X1, X2) = e 4+ \/§t6(2t2+1> 5—3t(2t2+1) 6
N x _ 2t Py 4 N 8(t2—t+1)(t2+t+1)x
W Xs) = _\/§(n2+1) 3_3(t2+1) 4 3\/§t(t2+1)2 5
Ny(X1,Xq) = —ix3+ L)ﬁ

2 \/§(t2 +1)
Ny(Xq1, X5) = S22 k- éxﬁ

V3t 3(2 +1)
Ny(X1, Xg) — —MXSJ»LXG

6 V3t
! 2 4(t4+3t2+1) . .

NilXa, X3) = g Xe - \/§t3x4+ 32 (2 + 1) (262 + 1) EPIVE TR

1 4
Ny(Xo, Xg) = a 4+f3 5fmxs

ey, s

Ni(X2, X5) = TX{) - ﬁXG

2
Ni(X2, Xg) = *(tii:;l)xa
Ny(X;. Xj) = 0 ifij> 3.

Therefore Ny — 0 in the C%-norm on M® =T\ G.
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o Questions:
@ s there a flow in dimension 2n = 4, or in general, that explains the

existence of these examples?

@ Does every compact almost complex manifold admit a family of almost
complex structures with N; — 07

@ If yes, why? If not, what are the obstructions?



Thank you!

B L. Fernandez, T. Shin, S. O. Wilson, “Almost complex manifolds with small
Nijenhuis tensor”, arXiv:2103.06090.
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Consider the Lie group R? x4 R, where ¢ : R — Aut(R?), and R and R? have
the standard additive structures.

To obtain lattice: choose ¢(1) = A € SL(3,Z), and restrict to the case that A
has three real, positive, distinct eigenvalues.

Example:

A=11 0 —k

for any integer k£ with 6 < k < 15.

Extended: ¢ : R — Aut(R3) by defining ¢; = exp(tlog A).

Let I' = Z3 x4 Z be lattice in G =R3 x4 R.

According to Hasegawa's classification of compact complex 4-dimensional
solvmanifolds, any such solvmanifold I'\ G does not have a complex structure.
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L 2(231429)t 231430 2(23142A9) (A1 42X0) A2
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To give a 1-parameter family of almost complex structures J; on (g, [, ]) with
Ny, — 0, it suffices to give almost complex structures K; on (g,{, }) in the
basis { X1, Xo, X3, X4}, with Ng, — 0, for then we may define J; := V71K, V.

In the ordered basis {Xi,..., X4}, let

2(A1+272)
1 1/t S 0
/ (12t
72(2>\1+)\2)L 72)\1#»)\2 72(2)\1«#)\2)()\1«#2)\2) )\1«}»2)\2
K = X1 — Ao X1 — Ao (A —20)2 (A1 —22)i
AL +2Xg —1
¢ 1/2 XA =t
2(2X1 +A0)t
0 ' xR 0

One can show that K? = —Id.
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Then the Nijenhuis-tensor of K; is determined by

A+ 279
Ni(Xy1, Xg) = fxl
2(221 + 22) (A1 +222)
Ny(X1,X3) = ——————— X1
(A1 — )t
A1+ 2X 2(221 + Ag) (A + 22 A1+ 2X
Nt(xl,x4)=—< 1 " 2>X1+< ( 1()\ 2)(/\1), 2)>X27 ( 1 , 2>Xa
¢ 1= Aot t
2 (X + 2X3) 2(2X1 + Ag) (A1 + 2X9) A1+ 229
Ni(Xg, X3) = ( 2 X — ) o)t Xg + a— X3
1= A2
(221 +22) (M +2)\2)) <A1+2*2>
Ni(Xg,Xy) = [ —— 2= 20 ) Xy — [ 2 ) X
+(X2, Xq ( g — A2 2 ) 3

(221 + 22)(Nq +2/\2)2> Xo - ((/\1 +2/\2)2> Xs.

Ni(X3,X4) = |2
i %) ( (A1 —A2)2e2 (A1 = xg) 2
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(A1 = Ag)t
A+ 22 2(221 4 A9) (A1 + 22 A+ 22
Nt(X1,X4)=7<12 2>x1+<( 1+ A2)( 2)>x27<1 2>Xa
¢ (A1 — Ag)t ¢
2(Aq 4 22 2(2X31 + A2)(Ag + 2 A+ 22
No(Xg, X3) = (A1 +229) Xy - (B2 H A0 2y, 4 (F 22
2 (A1 — Ag)t t
(221 +22) (N +2)\2)) <A1+2*2>
Ny(Xg, Xg) = | —+ 2071 77727 ) x, - (22 ) x
1(X2, Xgq ( 1 — ) 2 o2 3
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